LOKI-100G-3S-1P

3-speed (100/40/10G) dual-media test module

The Loki-100G-3S-1P is a 3-speed (100/40/10GE) dual-media test module for the ValkyrieCompact and ValkyrieBay chassis (where it fills 2 slots). This cost-optimized test module supports two transceiver form-factors: QSFP28 (CAUI-4), QSFP+ (CAUI), and CXP (CAUI) allowing users to choose either of these transceiver form factors to be active at any . time.

When the CXP form-factor is selected, the user can, in addition to a single 100G test port, also use the test module to provide two 40G test ports or eight 10G test ports. This flexibility and price/performance makes it ideal for BERT, load-stress, and functional testing of Ethernet equipment and network infrastructure.

TOP FEATURES

- 3-speed flexibility
- Dual-media value
- Price/performance
- Ease of use
- Unique "eye diagram" feature
- Free software (incl. ValkyrieManager, ValkyrieCLI, Valkyrie2544, Valkyrie1564, Valkyrie3918, and Valkyrie2889)
- Three years' free software updates
- Three years' hardware warranty
- Free tech support product lifetime

QSFP28 or QSFP+ = 100/40G

PORT LEVEL FEATURES

Payload Test pattern Error Injection

Interface category CXP • 100G, 40G, and 10G Ethernet 100G Ethernet OSFP28 QSFP+ 40G Ethernet Number of test ports (software configurable) СХР 1 x 100G / 2 x 40G / 8 x 10G QSFP28 • 1 x 100G QSFP+ • 1 x 40G Interface options СХР • 100GBASE-SR10, 2 x 40GBASE-iSR4 / 8 x 10GBASE-iSR • 100GBASE-SR4 , 100GBASE-LR4, 100GBASE-CWDM4 OSFP28 OSFP+ • 40GBASE-SR4, 40GBASE-LR4, 40GBASE-CR4 IEEE 802.3 Clause 73, Auto-negotiation Auto Negotiation and Link Training IEEE 802.3 Clause 72, Link training Forward Error Correction (FEC) RS-FEC (Reed Solomon) FEC, IEEE 802.3 Clause 91 Number of transceiver module cages 1 x CXP, 1 x QSFP28/QSFP+ (one cage can be used at a time) Link state, FCS errors, pause frames, ARP/PING, error injections, training packet Port statistics 1) All traffic: RX and TX Mbit/s, packets/s, packets, bytes Traffic w/o test payload: RX and TX Mbit/s, packets/s, packets, bytes Adjustable Inter Frame Gap (IFG) Configurable from 16 to 56 bytes, default is 20B (12B IFG + 8B preamble) Transmit line rate adjustment Ability to adjust the effective line rate by forcing idle gaps equivalent to -1000 ppm (increments of 10 ppm) From -400 to 400 ppm in steps of 0.001 ppm (shared across all ports) Transmit line clock adjustment ARP/PING Supported (configurable IP and MAC address per port) Field upgradeable System is fully field upgradeable to product releases (FPGA images and Software) Tx disable Enable/disable of optical laser or copper link IGMPv2 multicast join/leave IGMPv2 continuous multicast join, with configurable repeat interval Histogram statistics 1) Two real-time histograms per port. Each histogram can measure one of RX/TX packet length, IFG, or Latency distribution for all traffic, a specific stream, or a filter Loopback modes • L1RX2TX – RX-to-TX, transmit byte-by-byte copy of the incoming packet • L2RX2TX - RX-to-TX, swap source and destination MAC addresses (*only at 10G) L3RX2TX - RX-to-TX, swap source and destination MAC addresses and IP addresses (*only at 10G) TXON2RX - TX-to-RX, packet is also transmitted from the port TXOFF2RX - TX-to-RX, port's transmitter is idle Port-to-port - Inline loop mode where all traffic is looped 100% transparent at L1 Oscillator characteristics Initial Accuracy is 3 ppm • Frequency drift over 1st year: +/- 3 ppm (over 15 years: +/- 15 ppm) • Temperature Stability: +/- 20 ppm (Total Stability is +/- 35 ppm) 100/40GE FRAMED PRBS AND PCS LAYERS PRBS 2^31

Manual single shot bit-errors or bursts, automatic continuous error injection

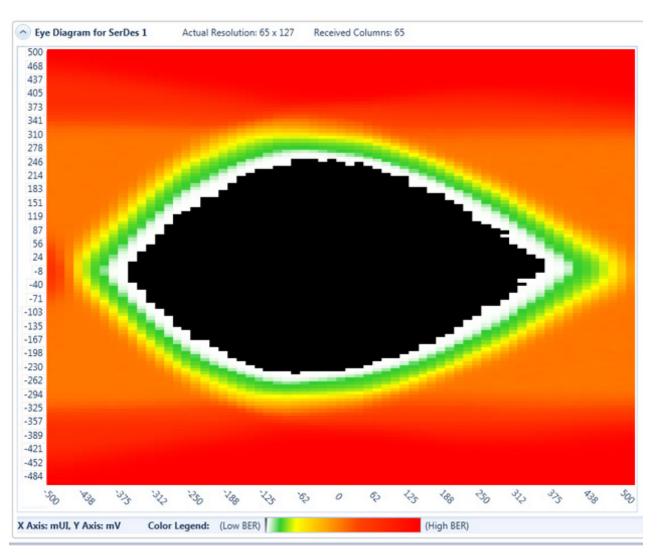
Xena Networks The price/performance leaders in Gigabit Ethernet Test & Measurement

Frame size and header	Fixed size from 56 to 9200 bytes, any layer 2/3/4 frame header
Alarms	Pattern loss, bit-error rate threshold
Error analysis	bit-errors: seconds, count, rate
	mismatch '0' / '1': seconds, count, rate logging and analysis of bit-error event timing
PCS virtual lane configuration	User defined skew insertion per Tx virtual lane, and user defined virtual lane to SerDes mapping for testing of the Rx PCS virtual lane re-order function.
PCS virtual lane statistics	Relative virtual lane skew measurement (up to 2048 bits), sync header and PCS lane marker error counters, indicators for loss of sync header and lane marker, BIP8 errors
TRANSMIT ENGINES	
Number of transmit streams per port	64 (wire-speed)
	Each stream can generate millions of traffic flows through the use of field modifiers
Test payload insertion per stream	Wire-speed packet generation with timestamps, sequence numbers, and data integrity signature optionally inserted into each packet.
Stream statistics 1)	TX Mbit/s, packets/s, packets, bytes, FCS error, Pause
Bandwidth profiles	Burst size and density can be specified. Uniform and bursty bandwidth profile streams can be interleaved
Field modifiers	16-bit header field modifiers with inc, dec, or random mode. Each modifier has configurable bit-mask, repetition, min, max, and step parameters. 2 modifiers per stream
Packet length controls	Fixed, random, butterfly, and incrementing packet length distributions from 56 to 9200 bytes
Packet payloads	Repeated user specified 1 to 18B pattern, a 8-bit incrementing pattern
Error generation	Undersize length (56B min) and oversize length (9200 max.) packet lengths, injection of sequence, misorder, payload integrity, and FCS errors
TX packet header support and RX autodecodes	Ethernet, Ethernet II, VLAN, ARP, IPv4, IPv6, UDP, TCP, LLC, SNAP, GTP, ICMP, RTP, RTCP, STP, MPLS, PBB, or fully specified by user
Packet scheduling modes	Normal (stream interleaved mode) – standard scheduling mode, precise rates, minor variation in
	 packet inter-frame gap. Strict Uniform – new scheduling mode, with 100% uniform packet inter-frame gap, minor deviation
	from configured rates.
	Sequential packet scheduling (sequential stream scheduling). Streams are scheduled continuously in
	sequential order, with configurable number of packets per stream.
	 Burst. Packets in a stream are organized in bursts. Bursts from active streams form a burst group. The user specifies time from start of one burst group till start of next burst group.
RECEIVE ENGINE	
Number of traceable Rx streams per port	480 (wire-speed)
Automatic detection of test payload for received	Real-time reporting of statistics and latency, loss, payload integrity, sequence error, and misorder error
packets	checking
Jitter measurement	Jitter (Packet Delay Variation) measurements compliant to MEF10 standard with 8 ns accuracy Jitter can be measured on up to 32 streams
Stream statistics ¹⁾	RX Mbit/s, packets/s, packets, bytes.
	Loss, payload integrity errors, sequence errors, misorder errors
	Min latency, max latency, average latency Min litter, max litter, average litter
Latency measurements accuracy	Min jitter, max jitter, average jitter ±64 ns
Latency measurement resolution	8 ns (Latency measurements can calibrate and remove latency from transceiver modules)
Number of filters:	 4 x 64-bit user-definable match-term patterns with mask, and offset
	 4 x frame length comparator terms (longer, shorter)
	• 4 x user-defined filters expressed from AND/OR'ing of the match and length terms.
Filter statistics ¹⁾	Per filter: RX Mbit/s, packets/s, packets, bytes.
CAPTURE	
Capture criteria	All traffic, stream, FCS errors, filter match, or traffic without test payloads
Capture start/stop triggers	Capture start and stop trigger: none, FCS error, filter match
Capture limit per packet	16 – 9200 bytes
Wire-speed capture buffer per port	256 kB for 100G
	128 kB for 40G
Low speed capture buffer per port (10Mbit/s speed)	4096 packets (any size)
ADVANCED PHY FEATURES	
Transmit Equalization Controls	Tx Transmit Equalization Controls Pre-emphasis
	 Tx Attenuation Tx Post-emphasis Signal Integrity Analysis Graphical "eye" diagram
Cional Integrity Agelysis	Rx Optional Auto-Tune of PHY 25Gbps Rx SerDes
Signal Integrity Analysis	Graphical "eye" diagram Horizontal bathtub curve estimation
	Vertical bathtub curve estimation
	Bit Error Rate (BER) estimation
100G 803.bj Clause 91 Reed-Solomon	Optional
Forward Error Correction (CL91 RS-FEC)	
1) Counter size: 64 bits	

UNIQUE EYE DIAGRAM

The Loki-100G-3S-1P includes a unique feature for analyzing signal quality called the "eye diagram". When using QSFP28 ports on the Loki-100G-3S-1P, an additional panel called "Advanced PHY Features" will appear in the main Resource Properties tab of ValkyrieManager. This panel controls and monitors the four receive SerDes associated with the 4x10G or 4x25G link at the physical level. It also creates biterror-rate (BER) eye diagrams, estimates the link BER from the vertical and horizontal BER bathtub curves and controls the PHY tuning in the transmit and the receive directions.

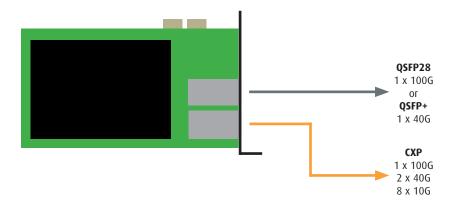
How it works


The BER eye-diagram provides a direct visual representation of the signal quality after RX equalization. The eye-diagram is formed by changing the time dimension (sampling delay) and the amplitude dimension (0/1 threshold) of the sampling point of the PHY step-by-step. For each sampling point (x,y), 1 million bits are measured, the number of bit-errors are counted and a simple division gives the BER. The result is the BER eye-diagram (see below).

The color map shows the measured bit-error rate for each point going from 1 million (maximum red) to zero (black). The color scale is logarithmic. Higher resolutions give a clearer diagram and higher values of X and Y will also give a higher precision in the vertical and horizontal bathtub curve estimations, respectively.

What it shows

The eye-data table provides an estimate of several parameters of the eye, including width, height and jitter. Future releases will also include link BER estimates based on the horizontal and vertical bathtub curves.


Common Parameters	
Width	Estimated eye-width in mUI
	Estimated eye-height in mV
Height	
Horizontal Bathtub Parameters	
HSlope left	Left slope of the horizontal bathtub curve
HSlope right	Right slope of the horizontal bathtub curve
Y-intercept left	Intersection with the Y-axis on the left side
Y-intercept right	Intersection with the Y-axis on the right side
R-squared fit left	Quality assessment of the estimation. Max = 100.
R-squared fit right	Quality assessment of the estimation. Max = 100.
Est RJrms left	Estimated random jitter (rms) - left side
Est RJrms right	Estimated random jitter (rms) - right side
Est DJpp	Estimated deterministic jitter
Vertical Bathtub Parameters	
VSlope bottom	Bottom slope of the vertical bathtub curve
VSlope top	Top slope of the vertical bathtub curve
X-intercept bottom	Intersection with the bottom X-axis
X-intercept top	Intersection with the top X-axis
R-squared fit bottom	Quality assessment of the estimation. Max = 100
R-squared fit top	Quality assessment of the estimation. Max = 100
Est RJrms bottom	Estimated random jitter (rms) - bottom
Est RJrms top	stimated random jitter (rms) - top

The dual media capability of the Loki-100G-3S-1P is clearly illustrated here with the trunk cable from the CXP interface ready to provide up to 8 x 10G ports, while the QSFP28 interface provides a 100G test port.

SPECIFICATIONS

Dimensions

- 1U ValkyrieCompact
- 19" (48.26 cm) 1.75" (4.45 cm) • W:
- H:
- 9.8″ (25 cm) • D: • Weight: 10 lbs (4.5 kg)

- 4U ValkyrieBay (2 slots)
- W: 19" (48.26 cm) 7" (17.78 cm) • H:
- 19.7″ (50 cm) • D:
- Weight: 36.4 lbs (16.5 kg)

Power

- AC Voltage: 100-240V
- Frequency: 50-60Hz
- Max. Power: 90W
 - (ValkyrieCompact)

• FCC (US), CE (Europe)

- / 120W (ValkyrieBay)
- Max. Current: 0.8A with 120V supply, and 0.4A with 240V supply

Environmental

- Operating Temperature: 10 to 35° C
- Storage Temperature: -40 to 70° C
- Humidity: 8% to 90% non-condensing

Max. Noise

- ValkyrieCompact: 49 dBa
- ValkyrieBay: 58.5 dBa

www.xenanetworks.com Sales contact: sales@xenanetworks.com

"Xena", "Xena Networks" and the "X" logo are trademarks of Xena Networks ApS, Denmark. © Xena Networks - 2018-08-27

Regulatory